An Efficient Iterative Framework for Semi-supervised Clustering Based Batch Sequential Active Learning Approach

نویسنده

  • S. Savitha
چکیده

Semi-supervised is the machine learning field. In the previous work, selection of pairwise constraints for semi-supervised clustering is resolved using active learning method in an iterative manner. Semi-supervised clustering derived from the pairwise constraints. The pairwise constraint depends on the two kinds of constraints such as must-link and cannot-link.In this system, enhanced iterative framework with naive batch sequential active learning approach is applied to improve the clustering performance. The iterative framework requires repeated reclustering of the data with an incrementally growing constraint set. To address incrementally growing constraint set, a batch approach is applied which selects a set of points based on query in each iterative. In the iterative algorithm, k instances select the best matches in the distribution, leading to an optimization problem that term bounded coordinated matching. Leveraging the availability of highly-effective sequential active learning method will improve performance in terms of label efficiency and accuracy with less number of iterations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Efficient Iterative Framework for Semi- Supervised Clustering Based Batch Sequential Active Learning Approach

Semi-supervised is the machine learning field. In the previous work, selection of pairwise constraints for semi-supervised clustering is resolved using active learning method in an iterative manner. Semi-supervised clustering derived from the pairwise constraints. The pairwise constraint depends on the two kinds of constraints such as must-link and cannot-link.In this system, enhanced iterative...

متن کامل

Wised Semi-Supervised Cluster Ensemble Selection: A New Framework for Selecting and Combing Multiple Partitions Based on Prior knowledge

The Wisdom of Crowds, an innovative theory described in social science, claims that the aggregate decisions made by a group will often be better than those of its individual members if the four fundamental criteria of this theory are satisfied. This theory used for in clustering problems. Previous researches showed that this theory can significantly increase the stability and performance of...

متن کامل

Wised Semi-Supervised Cluster Ensemble Selection: A New Framework for Selecting and Combing Multiple Partitions Based on Prior knowledge

The Wisdom of Crowds, an innovative theory described in social science, claims that the aggregate decisions made by a group will often be better than those of its individual members if the four fundamental criteria of this theory are satisfied. This theory used for in clustering problems. Previous researches showed that this theory can significantly increase the stability and performance of...

متن کامل

Active Learning of constraints using incremental approach in semi-supervised clustering

Semi-supervised clustering aims to improve clustering performance by considering user-provided side information in the form of pairwise constraints. We study the active learning problem of selecting must-link and cannot-link pairwise constraints for semi-supervised clustering. We consider active learning in an iterative framework; each iteration queries are selected based on the current cluster...

متن کامل

Active Query Selection and Spectral Eigenvectors Semi-Supervised Clustering

Semi-supervised clustering aims to improve clustering performance by considering user supervision in the form of pairwise constraints. In this paper, we study the active learning problem of selecting pairwise must-link and cannot-link constraints for semisupervised clustering. We consider active learning in an iterative manner where in each iteration queries are selected based on the current cl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015